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ABSTRACT

The equation for the vertical veloeity in a quasi-non-divergent, three-parameter model has been solved for a

certain simple flow pattern.
discussed frown the solutions.

computed and compared with those obtained by other investigators.

The importance of vertical variation of static stability and of the horizontal wind is
Examples showing the distribution of divergence relative to the synoptic systems are

A general discussion of the factors influencing

the mid-tropospherie divergence follows in section 4, and seetion 5 containg finally some remarks on the divergence

in very long waves.

1. INTRODUCTION

The distribution of convergence and divergence and
of wvertical velocity relative to the atmospheric flow
pattern has been a very important and most intriguing
problem in synoptic and dynaimic meteorology for many
vears. Due to the fact that these quantities have to be
obtained by indirect methods numerous rules relating
the distribution of divergence to the synoptic flow pat-
tern have been formulated. Intensive synoptic studies
(Fleagle, [2]) have resulted in characteristic distributions
of divergence relative to the troughs and ridges. Theo-
retical studies by Charney [1] and others using a very
general continuous model gave as a byv-product the
divergence fields in baroclinic waves. General agreement
between the results of the synoptic and theoretical studies
was apparent.

The different dynamical models applied in numerical
weather prediction and in studies of the general circula-
tion, except the non-divergent model, contain implicitly
distributions of divergence and wvertical velocity, but
because most of the time integrations have been made
with one- or two-parameter models it has not been too
interesting to studyv the predicted distributions since the
vertical variations are constrained to very simple patterns
like parabolic distributions of vertical velocity with
pressure and linear variations of divergence.

The experiments with quasi-non-divergent two-parain-
eter models have shown that these models are not
sufficiently accurate to predict the developments of
strong baroclinic nature. Several reasons may be men-
tioned for these somewhat discouraging results, but it is
evident that the two-parameter model which assumes a
constant direction of the thermal wind is not able to
describe the vertical variation of the temperature advec-
tion pattern. Quite frequently we find regions of cold
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air advection superimposed on warm air advection in the
same vertical column and vice versa. The only way to
incorporate such features is to introduce more information
levels to get a better vertical resolution of the model.
From the operational point of view it is obvious that
as few levels as possible are desirable. Not only does

_this decrease the time required to compute the forecasts,

but the analysis problem becomes also less time consuming.
One may therefore ask whether the addition of one extra
information level will change the behavior of the model
to such an extent that we can expect substantial differ-
ences between the three- and the two-parameter models.

Tt is the purpose of this study to show that the distri-
butions of divergence and vertical velocity which are
inherent in the three-parameter model show a great
similarity to the distributions obtained by Charney [1],
Fleagle [2] and more recently Hinkelmann [3]. A treat-
ment of the three-parameter model as compared to the
continuous case has the advantage that the solutions for
divergence and vertical velocity considering relatively
simple flow patterns can be expressed in such a form that
the importance of the different factors contained in the
solution can be casily investigated. We shall thus be
able to consider the importance of the vertical variation
of stability and the variation of wind speed with height,
especially a crude measure of the curvature of the wind
profile.  Another advantage in this case is that we shall
be able to study the solution for different horizontal scales.

The vertical variation of static stability will in this
study be preseribed as a function of pressure in such a
way that we obtain the major part of its systematic
climatological variation. It should be stressed that this
variation does not necessarily correspond to the synoptic
variability.

[t is necessary to restrict the investigation in this paper
to flow patterns where the zonal wind is constant in each
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isobaric surface, but of course can vary with pressure,
and to waves of the simple sinusoidal type. The results
which can be obtained in this way are ol course not directly
applicable to the real atmosphere with its much more
complicated flow pattern. Solutions for observed atmos-
pheric flow patterns can be obtained by numerical
methods. The diagnosis of the real atimosphere using
equations very similar to those in this paper is presented
by Cressman in another paper in this issue.

2. THE COMPUTATION OF VERTICAL VELOCITY
IN THE THREE-PARAMETER CASE

The three-parameter representation of the atmosphere
allows a solution for the vertical velocity at two internal
levels in each vertical column in addition to the two values
obtained from the boundary conditions at the top of the
atmosphere and at the ground. Using a finite difference
form of the continuity equation we can consequently
obtain three values of the divergence at the intermediate
levels. In this paper we shall for simplicity divide the
atmosphere into six layers, each corresponding to p,/6 ¢b.,
where p, is the pressure at the ground (fig. 1). We shall
assume that p,=100 cb. and thus neglect the effect of
topography. The boundary conditions for the vertical
velocity, w=dp/dt, will be w=0 for p=0 and p=p, It
is quite likely that it will be an advantage to assume w=0
at some level in the stratosphere in the practical applica-
tion and also to include the effects of the topography and
friction at the lower boundary.

The equation for the vertical velocity is obtained from
the vorticity equation in the form:

o¢  Ow .
'a“t—i“V-V(i“l‘f)Zfoafp (2.1

and the adiabatic equation
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In (2.1) and (2.2) V=k X V¢ is the horizontal wind
assumed to be nondivergent, k a vertical unit vector, y the
streamfunction, {=V2y the vertical component of the
relative vorticity, f the Coriolis parameter, w=dp/dt the
vertical velocity, and o=—adln 6/0p a measure of static
stability ; « is specific volume and 8 potential temperature.
The vertical derivative of the geopotential has been
replaced by the vertical derivative of the streamfunction
in the adiabatic equation (2.2) using the approximate
relation (Phillips [5])

OY/Op=1/fy0/Op (2.3)

where ¢=gz is the geopotential, g the acceleration of
gravity, and 2z the height of the isobaric surface.
From (2.1) and (2.2) we obtain the w-equation

ot oo=h] 2 (Vv - (V)] e
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In the derivation of (2.4) it has further been assumed
that the horizontal variation of the static stability can
be neglected, while a vertical variation is still possible.

The procedure to be followed is now to apply (2.4) at
the levels 2 and 4 (see fig. 1), to approximate vertical
derivatives by finite differences in a straightforward way,
and in this way obtain two equations both containing w,
and w, as unknowns. The streamfunction, ¥, has then
to be known at the levels 1, 3, and 5. It is, however, con-
venient to introduce the new quantities

W*%—%}
‘l’”:\h_\baJ

' and ¥’ are the streamfunctions for the thermal flow
in the layvers between levels 1 and 3 and levels 3 and 5,
respectively, and are of course measures of the mean
temperatures in these lavers.

Applying finite differences and using the boundary
conditions for w, we arrive alter certain simple manipula-
tions at the following set of equations for w, and w,:

0w o I T TV T )
2 5 2 2 P2 4 P 3
—V;3- V' =V Vg — V' V']
L (2.6)
2 21‘(;2 f(i f() 9 rs
o Vi, — >3 T 2= {V V v‘// )
1 Iz

_V3‘vf,,—vll'vn3+v/"vfll]-J

P is a constant pressure interval equal to 33% ¢b.  Equa-
tions (2.6) is the system which has to be solved for w, and
wy given the three streamfunctions ¥, ¢/, and ¢/,

The three streamfunctions will be prescribed by the
expressions:

Yo=— Uy 445 sin kr
Y =—0U"y+A" sin (kr+o') (2.
¢'=—U"y4+ A" sin (kz+a’').

[)
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S

L5, U7, and U are the zonal wind at level 3 and the
thermal winds in the layers above and below this level.
All three will be assumed to be constant. A, A7, and A4’/
are the amplitudes of the streamlunctions. It is seen
that kA, kA and kA’ are the maximum meridional wind
components in the three fields. o and &'’ measure the
phase lag of the two thermal fields relative to the
streamfunction at level 3. Positive values of the a's
mean that the thermal field is lagging behind the stream
field at level 3.

It is pertinent to mention that the values of ¢ and «”/
determine the mean slope of the trough and ridge lines in
the layers between the levels 1 and 3 and the levels 3 and
5, respectively. o’ and o’ determine together a measure
of the change in slope with height of the pressure systems.



MaArcH 1961

The flow pattern at level 1 is obtained by adding the
expressions for y; and ¢’.  Applying simple trigonometric
formulas we may write the streamfunction at level 1 in
the form:

Yr=— (Us+ Uy Ay sin (kx+v1) (2.8)
where
A= (A2 +A2424;47 cos o) (2.9)
and '
tan y1= A sin a (2.10)

443+44’ cos o

It is thus seen that v, will be positive il o’ >0 provided
o’ is not so large that A,+.A4" cos a’< 0. In a similar
way the flow pattern at level 5 can be written:

Yvs=— (Us— Uy 4-As sin (kz—75) (2.11)
where
Ay (A A — 24,47 cos o’y (2.12)
and
tan yy== A7 sina (2.13)

A,— A" cosa’’
Agnin we find that v; and &'’ in general have the same
sign for atmospheric flow patterns. We have thus seen
that positive values of o’ and o’ mean that the flow at
level 1 is lagging behind the flow pattern at level 3, while
the flow pattern at level 5 precedes that at level 3. Posi-
tive values of «’ and @'’ indicate therefore the usual west-
ward tilt of the pressure systems, but the slope of a system
is not necessarily linear in pressure.

When the expressions (2.7) are substituted in the right
hand sides of equations (2.6) we get the following set of
equations:

2/5 4 Jo Jo )

V20, — e @t e ="p (2072 Ay cos ki
—FA(B—U"E? eos (keta)] L (2.14)
am%—%f; +ZT"2 wy= f“ S [2077 kA cos ke
ka”(BJrU”k?) cos (kzta'")).

The solutions to the system (2.14) will be of the form:

w,= B, cos kz-+ B, cos (kx+a’)+ By cos (kx+a'’)
(2.15)
w;=C", cos kx-+C, cos (ke+a’) 4+ cos (kxta'’).

The amplitudes B, 23 and (5 can be determined by
substitution of (2.15) into (2.14) and equating the coeffi-
cients of cos kxz, cos (kx+a’), and cos (kxr+ea’’). When
this procedure is carried through we find the following
expressions for the two vertical velocities:

» 1 70|: {[W( 4k,z+-’f0 L‘//fﬂ}kzl,
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Fr¢ure 1.--Division of the atmosphere into six layers.

] 7/ ’7
o[ ={ o fir (e 3) i
—}-[—/;’2 (B——l"k%z"%(agk2+}%fj>(3+l/”’k2)zr”:l- (2.17)
appearing in (2.16) and (2.17) is a

The quantity, A

b

* notation for the following expression

a=( ot 30 ) (st 50)- (B e

The meridional components ry="kA; cos kz, v’ =kA’ cos
(kx4-a’), and "=k’ cos (kz+a’’) have also been intre-
dueed in the solutions (2.16) and (2.17).

From the knowledge of @, and w, obtained from (2.16)
and (2.17) we can evaluate the divergence at the levels 1,
3, and 5, if we at the same time use the boundary condi-
tions for w; i.c., w=0 for p=0 and p=p,.

The divergences are cevaluated from the continuity
cquation in finite difference form.  We get

 (VV) =5

(V-V)i=—"7 (V-V)y=— b

(2.19)

3. DISCUSSION OF THE SOLUTION AND SOME
EXAMPLES

To best illustrate the distribution of divergence and
vertical motion zonal eross-sections are appropriate. To
produce such cross-sections it is necessary to obtain values
for the parameters, which are parts ol the coeflicients.

In the first example we have chosen a wavelength of
4000 km. The stability parameters, ¢, and o, were
determined in such a way that they correspond to the
usual increase of this parameter with height. It has been
shown (Wiin-Nielsen [6]) that the variation of o with
pressure is described with good accuracy using the
expression
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Tasre 1.—Values of U" and U7'.

Date, GMT | U’ m.see.”! | U7, m.see.™! i
UG PR PR, A##),Wﬁ

Feb. 8,1959, 1200 22.0 ' 14.0
Feb. 10,1959, 1200 21.4 12.6 §
Feb. 12,1959, 1200 21.2 10.8 |
Feb. 16,1959, 1200 17.2 9.8 :
Feb. 20,1959, 1200 8.8 13.2 i
Mean ‘ 18.1 } 12.1 :

o(p)=o0; <%)>2 3.1)

where o3 is the value of the stability at 50 ¢cb. The present
operational model applies a value of o; equal to approxi-
mately 3 MTS-units. Using (3.1), we get

0229 MTS-units, 0,>2.25 MTS-units. (3.2)

The values of the thermal winds, {7 and U’’, were
determined from actual wind data for a number of indi-
vidual days. The mean zonal winds were available at the
levels 85, 50, and 30 ¢cb. U’ and U’ were then obtained by
linear extrapolation and interpolation. The values are
given in table 1.

The mean values, U’'=18 musec.”!, U'"=12 m.sec.”!
were used in the examples. The striking [eature for the
five days in February 1959 is that the average shedr is
50 percent larger in the upper layer than in the lower
layer. It is interesting to see whether this result holds
in general for the middle latitude in winter. From wind
statistics for the period February 10, 1959 to April 10,
1959 it was found that the mean value of U’ was
16 m.sec.”™! and of U’ 9.5 m.sec.™> Data presented by
Petterssen ((4], p. 98) for Larkhill covering a 2-vear
period gave the values /=14 muwsec.”!, U"'=7 m.sec.™!
It may therefore be safely concluded that the wvertical
shear of the horizontal wind is somewhat larger above
than below 50 c¢b. in middle latitudes in winter. The
maximuim values of the meridional wind components were
chosen to be: »"=12 m.sec.”!, »"/==8 m.sec.”}, and =
16 m.sec.™

The last two parameters for which numerical values
have to be chosen are o’ and «’’. In the first computa-
tion the values a’=10° and a’”=20° were selected. These
values correspond to v;=4° and v;=14° as computed
from (2.10) and (2.13). As 360° corresponds to 4000
km. we find that the trough line at level 1 is only about
44 km. behind the trough line at level 3, while the trough
line at the lower level (level 5) precedes the trough at
level 3 by about 156 km. This first case has therefore
a very small slope but a somewhat larger slope in the
lower layer than in the upper. This difference in slope
is characteristic for many atmospheric systems.

Figure 2 shows the distribution of the divergence in a
zonal cross-section through a half wavelength. The heavy
dashed line in the central part of the figure is the position
of the trough line. The heavy solid line is the isoline {or
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Ficure 2.—Distribution of divergence in a zonal cross-section
through a half wavelength. In this case the wavelength is 4000
km. and the stability parameters correspond to the usual increase
of stability with height. West is to the left, east to the right. The
heavy dashed line is the position of the trough line.

zero-divergence. We find in this case that the non-
divergent level outside the trough region is situated a
little above the 500-mb. surface. However, as we ap-
proach the trough line from the west the line for zero-
divergence goes down to lower levels and intersects level
5 to the west of the trough position. Approaching the
trough line fromn the east the zero-divergence line goes up
and intersects with level 1 to the east of the trough at
this level. We find therefore convergence at all levels in
the trough. At the lower level we find convergence to
the east of the trough and divergence to the west, while the
opposite is the case at the higher level.

The distribution of divergence shown in figure 2 agrees
to a very large extent with the distributions computed
by Charney [1], Fleagle [2], and Hinkelmann [3]. It
seems Lherefore that the major features of the distribution
of divergence in a continuous model can be reproduced
by a three-parameter model.

Tt was found of interest to investigate the distribution
of divergence in the same zonal cross-section, if the vertieal
rariation of the stability parameter was disregarded. In
this computation it was assumed that ¢y==¢,=03; where
o3 was set equal to a standard value. The resulting dis-
tribution of divergence is reproduced in figure 3. Com-
paring figure 2 with figure 3 one sees that the distributions
are similar in a qualitative sense.  The divergence pattern
at level 3 has, however, an amplitude about 6 times
larger in figure 3 than in figure 2, while the divergence
is increased by a lactor of 2 at level 1. It seems therefore
important at least to incorporate an increase of the sta-
bility parameter ¢ with height in an operational model
because the divergence and the vertical velocity are quite
sensitive to this variation.

This fact is also illustrated in figure 4 which shows the
distribution ol the vertical velocity through a half wave-
length at level 2. The solid line corresponds to the case
where the vertical variation of stability is incorporated,
while the dashed line is the distribution of the vertical
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Frcuvre 3.—Distribution of divérgence in the same zonal eross-
section as in figure 2. In this case the stability parameter is set
to a standard value and does not vary in the vertical.

velocity in the case where oy=0,=0;. The damping in-
fluence of the increase of the stability parameter, ¢, 18
clearly seen in the figure. A similar figure (not repro-
duced) at the lower level (level 4) shows a very small
difference between the corresponding curves. This is
explained by the very small vertical variation of ¢ in the
lowest layer of the troposphere.

4. ON SOME FACTORS INFLUENCING THE
MID-TROPOSPHERIC DIVERGENCE

The divergence at level 3 estimated from the values of
ws and «,;, which in turn are found by solving the two
coupled w-equations, will be used in 2 numerical prediction
in the divergence term in the vorticity equation. It is
therefore of importance to investigate the different factors
which influence the distribution and magnitude of this
divergence. In the present model with three information
levels we have at least a first approximation to the curva-
ture of the vertical profile of the zonal wind. We have
further found in the preceding section that the vertical
variation of the stability parameter is of importance for
the magnitude of the mid-tropospheric divergence, but
not so much for the distribution.

In order to simplify the first part ol the discussion we
shall for a moment neglect the vertical variation of the
stability ¢.  With this simplification we obtain from (2.16)
and (2.17)

fO . [
P 3] Tk

— (U =Bk = (" /)]

(Ve V)= —2U"=U"" )y

(4.1)

The first term in the bracket of (4.1) represents the in-
fluence on the divergence patterns at level 3 caused by the
crude measure of the curvature of the vertical profile of
the horizontal wind. It is seen that (I77—U"") is propor-

MONTHLY WEATHER REVIEW 71

5xP 5
q \\\\\ 4
\\
~
3 S 3
~
~
2 S 2
~
~
] \\\ ]
N
N
o] [y — e —————————10
\\
| T ™. -1
~
~
2 S -2
~
\\
-34 \\\ -3
4 R a
-5l S

Frouvre 4.—Distribution of vertical velocity through a half wave-
length at level 2 (334 ¢b.). The solid line corresponds to the
case with vertical variation of stability, the dashed line to the
case of no vertical variation of stability. ““T”” designates position
of the trough line.

tional to the second derivative of U with respect to pres-
sure:

AU 1

Wuﬁ o'-u). (4.2)

If {7>U" as in the example represented in figures 2
and 3 the first term will result in convergence where
23>0, i.e. between the trough and the next ridge down-
stream, and divergence between the ridge and the following
trough. The opposite distribution will result if U7<U"".
The influence of the first term is therefore to increase the
instantancous speed of propagation of the waveif U/ >U"’,
and to decrease the speed if U7<U’’, but the term has no
influence on the instantancous deepening or filling.

In barotropic forecasts for 500 mb. it is often found
that a trough is forecast to move too slowly in the southern
portion, essentially in the region of the subtropical jet
stream.  According to synoptic investigations of the ver-
tical wind profile in this wind system we find U7 >U"".
It is therefore possible that the contribution from the first
term in (4.1) will help to remove this error.

Let us next turn our attention to the last two terms in
(4.1). If the wavelength is so short that (U’'—g/k?) is
positive we find that both terms produce convergence
where »" and ¢”” are positive and divergence where they
are negative. II thercfore the temperature patterns,
¢ and ¢, are lagging behind the flow 5, both of these
terms contribute to produce convergence in the trough
and thus give a tendency for deepening. However, for
waves which are so long that (U'—g/k?) is negative, the
second term changes sign and the two last terms counteract
each other. In a qualitative way this argument shows
that the shorter waves develop faster than the longer.

Equation (4.1) 1s somewhat simplified because we have
assumed that g;=o,. If this assumption is removed we
get a more complicated expression for the mid-tropospheric
divergence. Subtracting (2.16) and (2.17) we obtain:
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The more general expression (4.3) shows that it is not
only the difference in the vertical shear which counts in
the first term in the bracket. The thermal wind U’ in
the upper layer is now multiplied by a factor depending
on the stability in the lower layer, while /"’ is multiplied
by a factor containing the stability in the upper layer.
Using standard values of ¢, and g, we can find the ratio
(U’/U""), which would give no contribution from the
first term in the bracket of (4.3). The ratio (U’/U"’),is
given as a function of wavelength in table 2 computed
from the formula:

Uy okt hir: W
U")c o+ f5/P* '

From the table it 1s seen that the vertical variation
of stability has the greatest influence on the divergence
for the shorter waves. With no variation of the stability
we get convergence ahead of the trough if only (U’—U"")
is positive. The values in table 2 show that U’ would
have to be at least two times larger than U’ to get the
same sign of the divergence for a wave with a wavelength
of 4000 km. The table shows also that only a minor
modification 1is introduced for the very long waves as
compared to the results derived from the simplified
formula (4.1). For a given value of (U’/U’’) character-
istic of atmospheric conditions, say 1.5, the first term in
(4.3) would result in divergence ahead of the trough in
short waves, but convergence in the same region for long
waves.

With respect to the last two terms in (4.3) we find some
modification of the magnitude, but no change of the sign.
The contributions from the terms are, however, large
enough to give convergence to the east of the trough
line in figure 2 as well as in figure 3.

Figure 5 shows the distribution of convergence and
divergence in a zonal cross-section in a more extreme
case. The distribution shown in figure 5 was computed
using the same parameters as in figure 2 except that the
phase differences between the temperature fields and the
stream function at 500 mb. were larger in the case il-
lustrated by figure 5. In the construction of figure 5 it
was assumed that o’=45° and «’’=90° which means
that the temperature field in the upper laver lags % of a

TasLE 2.—Values of (U'/U""), as a function of wavelength.
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Frcure 5.—Distribution of divergence in the same zonal cross-
section as in figure 2. In this case the phase differences between
the temperature fields and streamfunction at 500 mb. were larger
than in case shown in figure 2.

wavelength behind the streamfunction at 500 mb., while
the lag in the lower layer is % of a wavelength. The
result of the assumption i1s a larger slope of the trough
line. From the formulas (2.10) and (2.13) it follows that
the trough at level 5 precedes the 500-mb. trough by
about 300 km., while the trough at level 1 lags about
210 km. behind the 500-mb. trough.

The main effect of the greater vertical tilt of the system
is, as scen {rom figure 5, to produce a larger slope of the
convergence pattern. The convergence in and ahead
of the trough line has now a maximum in the midtrop-
osphere amounting to about 2 X107 %sec.”! with divergence
above and below,

5. REMARKS ON THE DIVERGENCE IN VERY LONG
WAVES

Due to the special difficulties encountered in fore-
casting the very long waves in the atmosphere it is of
interest to Investigate the distribution of divergence in
such waves in the present model. It is apparent from
(4.3) that the terms containing the vertical stability
beecome of minor importance when the wave number is
small. Tn the same case 1t is seen that the two S-terins
become dominating in the last two terms of the bracket in
(4.3). These two B-terms appear, however, with opposite
sign and therefore tend to compensate if ¥ and »"” are of
the same order ol magnitude and in phase. The impor-
tance of the first term for the determination of the di-
vergence distribution in this model is the difference,
(U"—U7").  As we find that (U'—U"’) is positive in the
jet stream regions where the waves have the greatest
amplitude, the contribution is to produce convergence to
the east of the trough and divergence to the west in the
very long waves and thus obtain a decrease of the retro-
gression. Forecast experiments with the model will show
whether the magnitude of the divergence is large enough
to control the very long waves.
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We may estimate the divergence from (4.3). Assuimning
the same values of the stability as in figure 3 (¢.=9 and
0,=2.25 MTS-units) and further /=18 m.scc.”!, U’ =
12 m.sec.”! we find in middle latitudes (f,=10"* sec.”!)
for k2=0.2XX10712m.~2, corresponding to two waves around
the hemisphere:

(VeV)s=—[0.29 13— 3.78 v’ +6.29 /'] X 10 ¥ sec.”"  (5.1)

Assuming further that the waves v;, ¢/, and ¢’ are in

phase and adopting the values v3,max=16 m.sec.™}, 2}, =12
m.sec.”!, and 94,x==8 m.sec.”! we find that

(VeV)3=—10"7 cos kx (5.2)
if the streamfunction at level 3 is
Ys=—U; y-+ Az sin kur. (5.3)

We find therefore in this case a distribution of divergence
which would counteract the retrogression of the very long
waves.

6. SUMMARY AND CONCLUSIONS

The distribution of vertical velocity and divergence in
a three-parameter model of the atmosphere has been
investigated. Section 2 contains the formulation of the
problem and the formal solution of the equation for the
vertical velocity in the model for sitnple sinusoidal waves.
The solution obtained in section 2 is discussed in the next

section, where the importance ol the vertical variation of

static stability and the vertical profile of the horizontal
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wind 1s pointed out. Examples showing the distribution
of divergence in zonal cross-scctions are shown. It is
found that the distribution of divergence in the three-
level model to a large extent resembles distributions by
others with more complicated models.

The different factors influencing the mid-tropospherie
divergence are investigated in section 4. It is found that
the vertical profile of the wind is most important for the
speed of propagation of the waves, while the vertical
slope of the waves contributes to the development.

The last section contains a discussion of the distribution
ol divergence in very long waves and an example is
computed.
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